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2.3 Composition of linear transformations
Recall that:

Lemma 1. Suppose that V,W and Z are vector spaces over F and that T :
V → W and U : W → Z are linear transformations. Then the composition
UT : V → Z defined by

UT (x) = U(T (x))

is also a linear transformation.

Also, recall that last week we showed

(†) : [T ]βα[x]α = [T (x)]β,

whenever T : V →W is a linear transformation and α, β are finite bases for
V and W , respectively.

Example: Let T : P2(R)→ P3(R) and D : P3(R)→ P2(R) be given by:

• T (p) =
∫ x
0 p(t)dt, and

• D(p) = p′.

Let α = {1, x, x2} and β = {1, x, x2, x3}. Then

[D]βα =

0 1 0 0
0 0 2 0
0 0 0 3

, and [T ]αβ =


0 0 0
1 0 0
0 1

2 0
0 0 1

3


Note that [D]βα[T ]αβ =

1 0 0
0 1 0
0 0 1

 = I3 = [I]α, where I(p) = p is the

identity linear transformation.

Next we talk about matrix representation of compositions of linear trans-
formations.

Theorem 2. Suppose that V,W and Z are finite dimensional vector spaces
over F and that T : V → W and U : W → Z are linear transformations.
Suppose α, β, γ are bases for V,W , and Z, respectively. Then

[UT ]γα = [U ]γβ[T ]βα.

Proof. Let dim(V ) = n, dim(W ) = k, dim(Z) = m, and α = {x1, ..., xn}.
Let A = [UT ]γα, B = [U ]γβ and C = [T ]βα. Note that A is m × n, B is

m× k, and C is k × n.
First we show that for each b ∈ Fn, Ab = BCb.

Let b = 〈b1, ..., bn〉 and x = b1x1 + ...+ bnxn. Then [x]α = ~b, and by (†),
we have:
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• A~b = [UT ]γα[x]α = [UT (x)]γ ,

• BC~b = [U ]γβ[T ]βα[x]α = [U ]γβ[T (x)]β = [U(T (x))]γ = [UT (x)]γ .

It follows that for every b ∈ Fn, Ab = BCb. In particular for every 1 ≤ i ≤ n,

the i-th column of A = Aei = (BC)ei = the i-th column of BC.

So, A = BC. �

Next we combine that addition of linear transformation and composition:

Some facts:

• U(T1 + T2) = UT1 + UT2,
• (L1 + L2)U = L1U + L2U ,
• IU = U = UI, where I is the identity linear transformation i.e.
I(x) = x for all x.

Recall also, that if T, L : V →W are linear transformations and α, β and

finite bases for V and W , respectively, then [T + U ]βα = [T ]βα + [U ]βα. In the
same spirit as above, here is what we have:

Some facts about matrices:

• A(B1 +B2) = AB1 +AB2,
• (C1 + C2)A = C1A+ C2A,
• InA = A = AIk, where In is the identity n × n matrix, and A is
n× k.

2.4 Invertibility and isomorphism

In this section we will define when two vector spaces are isomorphic.

Definition 3. Suppose V and W are vector spaces over a field F and T :
V → W be a linear transformation. T is an isomorphism between V and
W , if T is one to one and onto. When such a T exists, we say that V and
W are isomorphic and write V ∼= W .

As our first key example, we have the following lemma:

Lemma 4. Let V be a finite dimensional vector space over F with dim(V ) =
n. Then

V ∼= Fn.

Proof. Let β be any basis for V . Then, as we have already seen, φβ : V → Fn

given by
φβ(x) = [x]β

is a one-to-one, onto linear transformation. I.e. φβ is an isomorphism. �

Examples:
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(1) P2(R) ∼= R3,
(2) Pn(F ) ∼= Fn+1,
(3) Mk,n(F ) ∼= Fnk,
(4) If V andW are vector space over F , such that dim(V ) = n, dim(W ) =

k, then L(V,W ) ∼= Mk,n(F ) ∼= Fnk.

Note that if V ∼= W and W ∼= Z, then V ∼= Z. This is used in the last
example above.

We also give one example with infinite dimension:

Example: LetW = {p ∈ P (F ) | p(x) = a1x+a2x
2+...anx

n for some n ≥
1} = Span({x, x2, x3, ..., xn, ...}). Then P (F ) ∼= W .

To show this, let T : P (F )→ W be defined as follows. For a polynomial
p(x) = a0 + a1x+ a2x

2 + ...anx
n ∈ P (F ), set

T (p) = a1x+ a2x
2 + ...+ anx

n.

Then T is an isomorphism.

Next we show that any isomorphism T : V → W has an inverse i.e. a
linear transformation T−1 : W → V , such that for all x ∈ V and y ∈W ,

T−1T (x) = x, and TT−1(y) = y

i.e. T−1T = IV and TT−1 = IW , the identity maps on V and W , respec-
tively.

Lemma 5. Suppose that T : V →W is a linear transformation. Then T is
one-to-one and onto iff T has an inverse.

Proof. For the first direction, suppose that T is one-to-one and onto. Then
for every y ∈W , since T is onto, there exists some x ∈ V such that T (x) = y.
Moreover, since T is one-to-one, this x is unique. Set T−1(y) = x. Then by
definition, for every x ∈ V , T−1T (x) = x.

For the other direction, suppose that T−1 : W → V exists. First we show
that T is one-to-one: let x ∈ V be such that T (x) = ~0. Then by definition

of the inverse, T−1(~0) = x. But also, since T−1 is linear, we have that

T−1(~0) = ~0. Since T−1 is a function, we have that x = ~0.
Next, to show that T is onto, take any arbitrary y ∈W . Let x = T−1(y).

Then by definition of the inverse, T (x) = y, and so y ∈ ran(T ).
�

Definition 6. An n× n matrix A is invertible iff there is an n× n matrix
B, such that AB = BA = In. The matrix B is called the inverse of A and
is usually denoted by A−1.

Lemma 7. An n by n matrix A is invertible iff LA is invertible.
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Proof. If A is invertible, let B be its inverse. Then, if Ax = ~0, since BA = In,
we have that

x = Inx = BAx = B~0 = ~0.

So ker(A) = {~0}, and LA is one-to-one. Also, for any ~y ∈ Fn, let ~x = B~y.
Then

A~x = AB~y = In~y = ~y.

So LA is onto. It follows that LA is invertible.
On the other hand, if LA is invertible, let T : Fn → Fn be its inverse i.e.

for all x ∈ Fn, LAT (x) = TLA(x) = x. Let e be the standard basis for Fn,
and let B = [T ]α. Then for any x ∈ Fn,

ABx = [LA]α[T ]αx = [LAT ]α[x]α = [LAT (x)]α = [x]α = x = Inx.

So, AB = In. (Similarly, BA = In.) Then A is invertible and B is its
inverse.

�

With a similar proof, we get that:

Lemma 8. Let dim(V ) = dim(W ) = n, and T : V → W is a linear
transformation, β any basis for V , γ any basis for W . Then T is invertible
iff [T ]γβ is invertible.

Moreover, in the case where T is invertible, setting A = [T ]γβ, and B =

[T−1]βγ , we have that B = A−1.


