MATH 320 NOTES, WEEK 9

2.3 Composition of linear transformations

Recall that:
Lemma 1. Suppose that V, W and Z are vector spaces over F and that T : $V \rightarrow W$ and $U: W \rightarrow Z$ are linear transformations. Then the composition $U T: V \rightarrow Z$ defined by

$$
U T(x)=U(T(x))
$$

is also a linear transformation.
Also, recall that last week we showed

$$
(\dagger):[T]_{\alpha}^{\beta}[x]_{\alpha}=[T(x)]_{\beta},
$$

whenever $T: V \rightarrow W$ is a linear transformation and α, β are finite bases for V and W, respectively.

Example: Let $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ and $D: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be given by:

- $T(p)=\int_{0}^{x} p(t) d t$, and
- $D(p)=p^{\prime}$.

Let $\alpha=\left\{1, x, x^{2}\right\}$ and $\beta=\left\{1, x, x^{2}, x^{3}\right\}$. Then
$[D]_{\alpha}^{\beta}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$, and $[T]_{\beta}^{\alpha}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$
Note that $[D]_{\alpha}^{\beta}[T]_{\beta}^{\alpha}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=I_{3}=[I]_{\alpha}$, where $I(p)=p$ is the identity linear transformation.

Next we talk about matrix representation of compositions of linear transformations.

Theorem 2. Suppose that V, W and Z are finite dimensional vector spaces over F and that $T: V \rightarrow W$ and $U: W \rightarrow Z$ are linear transformations. Suppose α, β, γ are bases for V, W, and Z, respectively. Then

$$
[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta} .
$$

Proof. Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=k, \operatorname{dim}(Z)=m$, and $\alpha=\left\{x_{1}, \ldots, x_{n}\right\}$.
Let $A=[U T]_{\alpha}^{\gamma}, B=[U]_{\beta}^{\gamma}$ and $C=[T]_{\alpha}^{\beta}$. Note that A is $m \times n, B$ is $m \times k$, and C is $k \times n$.

First we show that for each $b \in F^{n}, A b=B C b$.
Let $b=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and $x=b_{1} x_{1}+\ldots+b_{n} x_{n}$. Then $[x]_{\alpha}=\vec{b}$, and by (\dagger), we have:

- $A \vec{b}=[U T]_{\alpha}^{\gamma}[x]_{\alpha}=[U T(x)]_{\gamma}$,
- $B C \vec{b}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}[x]_{\alpha}=[U]_{\beta}^{\gamma}[T(x)]_{\beta}=[U(T(x))]_{\gamma}=[U T(x)]_{\gamma}$.

It follows that for every $b \in F^{n}, A b=B C b$. In particular for every $1 \leq i \leq n$,
the i-th column of $A=A e_{i}=(B C) e_{i}=$ the i-th column of $B C$.
So, $A=B C$.

Next we combine that addition of linear transformation and composition:

Some facts:

- $U\left(T_{1}+T_{2}\right)=U T_{1}+U T_{2}$,
- $\left(L_{1}+L_{2}\right) U=L_{1} U+L_{2} U$,
- $I U=U=U I$, where I is the identity linear transformation i.e. $I(x)=x$ for all x.
Recall also, that if $T, L: V \rightarrow W$ are linear transformations and α, β and finite bases for V and W, respectively, then $[T+U]_{\alpha}^{\beta}=[T]_{\alpha}^{\beta}+[U]_{\alpha}^{\beta}$. In the same spirit as above, here is what we have:

Some facts about matrices:

- $A\left(B_{1}+B_{2}\right)=A B_{1}+A B_{2}$,
- $\left(C_{1}+C_{2}\right) A=C_{1} A+C_{2} A$,
- $I_{n} A=A=A I_{k}$, where I_{n} is the identity $n \times n$ matrix, and A is $n \times k$.

2.4 Invertibility and isomorphism

In this section we will define when two vector spaces are isomorphic.
Definition 3. Suppose V and W are vector spaces over a field F and T : $V \rightarrow W$ be a linear transformation. T is an isomorphism between V and W, if T is one to one and onto. When such a T exists, we say that V and W are isomorphic and write $V \cong W$.

As our first key example, we have the following lemma:
Lemma 4. Let V be a finite dimensional vector space over F with $\operatorname{dim}(V)=$ n. Then

$$
V \cong F^{n}
$$

Proof. Let β be any basis for V. Then, as we have already seen, $\phi_{\beta}: V \rightarrow F^{n}$ given by

$$
\phi_{\beta}(x)=[x]_{\beta}
$$

is a one-to-one, onto linear transformation. I.e. ϕ_{β} is an isomorphism.

Examples:

(1) $P_{2}(\mathbb{R}) \cong \mathbb{R}^{3}$,
(2) $P_{n}(F) \cong F^{n+1}$,
(3) $M_{k, n}(F) \cong F^{n k}$,
(4) If V and W are vector space over F, such that $\operatorname{dim}(V)=n, \operatorname{dim}(W)=$ k, then $\mathcal{L}(V, W) \cong M_{k, n}(F) \cong F^{n k}$.
Note that if $V \cong W$ and $W \cong Z$, then $V \cong Z$. This is used in the last example above.

We also give one example with infinite dimension:
Example: Let $W=\left\{p \in P(F) \mid p(x)=a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}\right.$ for some $n \geq$ $1\}=\operatorname{Span}\left(\left\{x, x^{2}, x^{3}, \ldots, x^{n}, \ldots\right\}\right)$. Then $P(F) \cong W$.

To show this, let $T: P(F) \rightarrow W$ be defined as follows. For a polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n} \in P(F)$, set

$$
T(p)=a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

Then T is an isomorphism.

Next we show that any isomorphism $T: V \rightarrow W$ has an inverse i.e. a linear transformation $T^{-1}: W \rightarrow V$, such that for all $x \in V$ and $y \in W$,

$$
T^{-1} T(x)=x, \text { and } T T^{-1}(y)=y
$$

i.e. $T^{-1} T=I_{V}$ and $T T^{-1}=I_{W}$, the identity maps on V and W, respectively.

Lemma 5. Suppose that $T: V \rightarrow W$ is a linear transformation. Then T is one-to-one and onto iff T has an inverse.

Proof. For the first direction, suppose that T is one-to-one and onto. Then for every $y \in W$, since T is onto, there exists some $x \in V$ such that $T(x)=y$. Moreover, since T is one-to-one, this x is unique. Set $T^{-1}(y)=x$. Then by definition, for every $x \in V, T^{-1} T(x)=x$.

For the other direction, suppose that $T^{-1}: W \rightarrow V$ exists. First we show that T is one-to-one: let $x \in V$ be such that $T(x)=\overrightarrow{0}$. Then by definition of the inverse, $T^{-1}(\overrightarrow{0})=x$. But also, since T^{-1} is linear, we have that $T^{-1}(\overrightarrow{0})=\overrightarrow{0}$. Since T^{-1} is a function, we have that $x=\overrightarrow{0}$.

Next, to show that T is onto, take any arbitrary $y \in W$. Let $x=T^{-1}(y)$. Then by definition of the inverse, $T(x)=y$, and so $y \in \operatorname{ran}(T)$.

Definition 6. An $n \times n$ matrix A is invertible iff there is an $n \times n$ matrix B, such that $A B=B A=I_{n}$. The matrix B is called the inverse of A and is usually denoted by A^{-1}.
Lemma 7. An n by n matrix A is invertible iff L_{A} is invertible.

Proof. If A is invertible, let B be its inverse. Then, if $A x=\overrightarrow{0}$, since $B A=I_{n}$, we have that

$$
x=I_{n} x=B A x=B \overrightarrow{0}=\overrightarrow{0}
$$

So $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, and L_{A} is one-to-one. Also, for any $\vec{y} \in F^{n}$, let $\vec{x}=B \vec{y}$. Then

$$
A \vec{x}=A B \vec{y}=I_{n} \vec{y}=\vec{y}
$$

So L_{A} is onto. It follows that L_{A} is invertible.
On the other hand, if L_{A} is invertible, let $T: F^{n} \rightarrow F^{n}$ be its inverse i.e. for all $x \in F^{n}, L_{A} T(x)=T L_{A}(x)=x$. Let e be the standard basis for F^{n}, and let $B=[T]_{\alpha}$. Then for any $x \in F^{n}$,

$$
A B x=\left[L_{A}\right]_{\alpha}[T]_{\alpha} x=\left[L_{A} T\right]_{\alpha}[x]_{\alpha}=\left[L_{A} T(x)\right]_{\alpha}=[x]_{\alpha}=x=I_{n} x .
$$

So, $A B=I_{n}$. (Similarly, $B A=I_{n}$.) Then A is invertible and B is its inverse.

With a similar proof, we get that:
Lemma 8. Let $\operatorname{dim}(V)=\operatorname{dim}(W)=n$, and $T: V \rightarrow W$ is a linear transformation, β any basis for V, γ any basis for W. Then T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible.

Moreover, in the case where T is invertible, setting $A=[T]_{\beta}^{\gamma}$, and $B=$ $\left[T^{-1}\right]_{\gamma}^{\beta}$, we have that $B=A^{-1}$.

